Nickel(II)–Bismuth(III) Bond Formation in Nickel(II) Complexes of Tris(o-dimethylarsinophenyl)bismuthine

By WILLIAM LEVASON, CHARLES A. MCAULIFFE,* and STEPHEN G. MURRAY (Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD)

Summary Tris(o-dimethylarsinophenyl)bismuthine (bitas) forms the square pyramidal complexes $[Ni(bitas)X]BPh_4$ (X = halide), the first examples of trivalent bismuth co-ordinated to a 3d transition metal in a positive oxidation state, and $[Ni_2(bitas)_3]^{4+}$, which contains examples of bitas functioning as a tridentate and a tetra-dentate ligand.

TRIPODAL ligands $E(-LR_2)_3$ (L = P, As; R = Ph, Me) usually function as quadridentate chelates when the apical atom E is a group VB element (N, P, As, Sb),¹ and as bi- or tri-dentate ligands when E is not a donor element, e.g. carbon.² We have now synthesised tris(*o*-dimethylarsinophenyl)bismuthine, (*o*-C₆H₄AsMe₂)₃Bi (bitas). In complexes of bitas the possibility exists either of tetradentate co-ordination (and the formation of a novel bismuth-metal bond) or tridentate (As₃) behaviour with the bismuth remaining unco-ordinated.

The reaction of nickel(II) halides, bitas, and $NaBPh_4$ in a 1:1:1 molar ratio in ethanol produces [Ni(bitas)X]BPh₄ complexes. These are diamagnetic, 1:1 electrolytes in 10^{-3} M nitromethane solution, and their electronic spectra in dichloromethane and in the solid state exhibit one broad absorption in the $18-21 \times 10^3$ cm⁻¹ range with a shoulder at lower energy characteristic of square-pyramidal geometry.³ The ¹H n.m.r. spectra in CDCl₃ and CH₂Cl₂ show two methyl resonances at τ 8.2 and 8.3 (intensities 1:2) assigned to co-ordinated -AsMe2 groups (-AsMe2 groups in the free ligand absorb at $\tau 8.9$). Thus, we assign the squarepyramidal structure (I) to these compounds with an apical As donor and a BiAs₂X donor set in the basal plane. This contrasts with the essentially trigonal bipyramidal complexes of the corresponding $E(o-C_6H_4AsMe_2)_3$ (E = As, Sb)

complexes⁴ and is probably due to the inability of the large Bi atom to occupy an apical position of a trigonal bipyramid.⁵

Nickel(II) perchlorate hexahydrate and bitas react in ethanol to form brown [Ni₂(bitas)₃](ClO₄)₄, irrespective of the ratio of the reactants. This diamagnetic complex is a 1:4 electrolyte ($\Lambda_{\rm M} = 312$ ohm⁻¹ cm² M⁻¹ in 10⁻³ M nitromethane),⁶ and its electronic spectrum is characteristic only of square pyramidal geometry ($E_{\rm max} = 20.6 \times 10^3$ cm⁻¹, $\epsilon = 1375$). The ¹H n.m.r. spectrum shows two methyl signals (τ 7.9 and 8.0 intensities 1:3.4) due to co-ordinated arsines, but none corresponding to free arsine groups. The i.r. spectrum confirms the absence of water and of per-

chlorate co-ordination. All this information points strongly to structure (II) which contains bitas acting as both a triand tetra-dentate ligand.

The paramagnetic [Co(bitas)Br]BPh4 and [Fe(bitas)Cl2]-[FeCl₄] have also been obtained.

These complexes contain the first examples of bismuth co-ordinated to a 3d metal in a positive oxidation state. We thank the S.R.C. for support.

(Received, 30th December 1974; Com. 1565.)

¹ B. C. Chiswell in 'Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands,' ed C. A. McAuliffe, Macmillan ¹ B. C. Chiswell in Transition Metal Complexes of Thosphorus, Income, end Transition Metal Complexes of Thosphorus, Income, end Transition Metal Complexes of Thosphorus, Income, end Transition J. C. Furlani, 2010.
² D. Berglund and D. W. Meek, Inorg. Chem., 1972, 11, 1493; R. Davis and J. E. Fergusson, Inorg. Chim. Acta, 1970, 4, 23.
³ C. Furlani, Co-ordination Chem. Rev., 1968, 3, 141; C. A. McAuliffe and D. W. Meek, Inorg. Chem., 1969, 8, 904.
⁴ L. Baracco, M. T. Halfpenny, and C. A. McAuliffe, J.C.S. Datton, 1973, 1945, and refs. therein.
⁵ J. W. Dawson, B. C. Lane, R. J. Mynot, and L. M. Venanzi, Inorg. Chim. Acta, 1971, 5, 25.
⁶ W. Rosen and D. H. Busch, Inorg. Chem., 1970, 9, 262.