Nickel(II)-Bismuth(III) Bond Formation in Nickel(II) Complexes of Tris(o-dimethylarsinophenyl)bismuthine

By William Levason, Charles A. McAuliffe,* and Stephen G. Murray
(Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD)

Summary Tris(o-dimethylarsinophenyl)bismuthine (bitas) forms the square pyramidal complexes $[\mathrm{Ni}$ (bitas) X$] \mathrm{BPh}_{4}$ ($\mathrm{X}=$ halide), the first examples of trivalent bismuth co-ordinated to a $3 d$ transition metal in a positive oxidation state, and $\left[\mathrm{Ni}_{2}(\text { bitas })_{3}\right]^{4+}$, which contains examples of bitas functioning as a tridentate and a tetradentate ligand.

Tripodal ligands $\mathrm{E}\left(-\mathrm{LR}_{2}\right)_{3}(\mathrm{~L}=\mathrm{P}, \mathrm{As} ; \mathrm{R}=\mathrm{Ph}, \mathrm{Me})$ usually function as quadridentate chelates when the apical atom E is a group V_{B} element ($\mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}$), ${ }^{1}$ and as bi- or tri-dentate ligands when E is not a donor element, e.g. carbon. ${ }^{2}$ We have now synthesised tris(o-dimethylarsinophenyl)bismuthine, $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{AsMe}_{2}\right)_{3} \mathrm{Bi}$ (bitas). In complexes of bitas the possibility exists either of tetradentate co-ordination (and the formation of a novel bismuth-metal bond) or tridentate $\left(\mathrm{As}_{3}\right)$ behaviour with the bismuth remaining unco-ordinated.

The reaction of nickel(II) halides, bitas, and NaBPh_{4} in a $1: 1: 1$ molar ratio in ethanol produces $[\mathrm{Ni}($ bitas $) \mathrm{X}] \mathrm{BPh}_{4}$ complexes. These are diamagnetic, $1: 1$ electrolytes in $10^{-3} \mathrm{~m}$ nitromethane solution, and their electronic spectra in dichloromethane and in the solid state exhibit one broad absorption in the $18-21 \times 10^{3} \mathrm{~cm}^{-1}$ range with a shoulder at lower energy characteristic of square-pyramidal geometry. ${ }^{3}$ The ${ }^{1} \mathrm{H}$ n.m.r. spectra in CDCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ show two methyl resonances at $\tau 8.2$ and 8.3 (intensities $1: 2$) assigned to co-ordinated $-\mathrm{AsMe}_{2}$ groups (-AsMe e_{2} groups in the free ligand absorb at $\boldsymbol{\tau} \mathbf{8 . 9}$). Thus, we assign the squarepyramidal structure (I) to these compounds with an apical As donor and a $\mathrm{BiAs}_{2} \mathrm{X}$ donor set in the basal plane. This contrasts with the essentially trigonal bipyramidal complexes of the corresponding $\mathrm{E}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{AsMe}_{2}\right)_{3}(\mathrm{E}=\mathrm{As}, \mathrm{Sb})$
complexes ${ }^{4}$ and is probably due to the inability of the large Bi atom to occupy an apical position of a trigonal bipyramid. ${ }^{5}$

(I)

(II)

Nickel(II) perchlorate hexahydrate and bitas react in ethanol to form brown $\left[\mathrm{Ni}_{2}(\text { bitas })_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$, irrespective of the ratio of the reactants. This diamagnetic complex is a $1: 4$ electrolyte ($\Lambda_{\mathrm{M}}=312 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~m}^{-1}$ in $10^{-3} \mathrm{M}$ nitromethane), ${ }^{6}$ and its electronic spectrum is characteristic only of square pyramidal geometry ($E_{\max }=20.6 \times 10^{3} \mathrm{~cm}^{-1}$, $\epsilon=1375$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows two methyl signals ($\tau 7.9$ and 8.0 intensities $1: 3.4$) due to co-ordinated arsines, but none corresponding to free arsine groups. The i.r. spectrum confirms the absence of water and of per-
chlorate co-ordination. All this information points strongly to structure (II) which contains bitas acting as both a triand tetra-dentate ligand.
The paramagnetic $\left[\mathrm{Co}(\right.$ bitas $\left.) \mathrm{Br}^{2}\right] \mathrm{BPh}_{4}$ and $\left[\mathrm{Fe}(\right.$ bitas $\left.) \mathrm{Cl}_{2}\right]$]-
$\left[\mathrm{FeCl}_{4}\right]$ have also been obtained.
${ }^{1}$ B. C. Chiswell in 'Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands,' ed C. A. McAuliffe, Macmillan London, 1973, p. 271.
${ }^{2}$ D. Berglund and D. W. Meek, Inorg. Chem., 1972, 11, 1493; R. Davis and J. E. Fergusson, Inorg. Chim. Acta, 1970, 4, 23.
${ }^{3}$ C. Furlani, Co-ordination Chem. Rev., 1968, 3, 141; C. A. McAuliffe and D. W. Meek, Inorg. Chem., 1969, 8, 904.
${ }^{4}$ L. Baracco, M. T. Halfpenny, and C. A. McAuliffe, J.C.S. Dalton, 1973, 1945, and refs. therein.
${ }^{5}$ J. W. Dawson, B. C. Lane, R. J. Mynot, and L. M. Venanzi, Inorg. Chim. Acta, 1971, 5, 25.
${ }^{6}$ W. Rosen and D. H. Busch, Inorg. Chem., 1970, 9, 262.

